

© 2010 Human Genome Center, Institute of Medical Science, The
University of Tokyo. All rights reserved

Page 1 of 18

Writing and Porting Scripts

in Cell Illustrator 5.0

© 2010 Human Genome Center, Institute of Medical Science, The University of Tokyo

All rights reserved.

© 2010 Human Genome Center, Institute of Medical Science, The
University of Tokyo. All rights reserved

Page 2 of 18

Table of Contents:

1. Introduction ... 3
2. Scripting Languages ... 3
3. Porting Models created with CI 4.0 .. 5

a. Set Pnuts as Default Scripting Language for the Model .. 5
b. Set Pnuts as Script Language for Selected Scripts ... 6
c. Port Selected Scripts to Java .. 6

4. Porting Scripts ... 8
a. Math Scripts ... 8

b. Mathematical Functions ... 9
c. Condition Statements ... 10
d. Special predefined functions .. 11

e. Complex/Generic Scripts ... 11
5. Appendix A. Definition of Simple Scripts .. 14
6. Appendix B. Definition of Simplemath Scripts .. 15

1. Introduction

Scripts are used in Cell Illustrator to define complex logic of the Petri Net and customize it.

Cell Illustrator (CI) 4.0 supports only one scripting language - Pnuts. Pnuts is a powerful

language, quite similar to java, which allows defining classes and using java libraries.

Nevertheless, in most cases scripts look like simple mathematical expressions (e.g.

„2+3*m1‟), sometimes enhanced by additional functions („getSimulationTime(simulator)‟,

„beta(x)‟) or expressions (such as conditions „if(..) …else ...‟ or grouping instructions „{…}‟).

In CI 5.0 a more general scripting mechanism is used. It is taken from Java Scripting API and

allows usage of many different languages in one model. CI 5.0 supports several scripting

languages: simplemath, Java, JavaScript (js) and Pnuts. All these languages are quite similar,

however each of them differs in details of their syntax. Scripts written in one language might

not be correct in different language.

Models created and simulated in CI 4.0 included Pnuts scripts only. Simulation of these

models in CI 5.0 might cause script execution errors, since Pnuts is NOT the default scripting

language of CI 5.0.

The main goal of this document is to describe:

- How to port CSML models created with CI 4.0 and run simulations in CI 5.0?

- How to port Pnuts scripts written in CI 4.0 to script languages of CI 5.0?

Moreover, this document gives answers the following questions:

- What are the differences between Pnuts and the other scripting languages?

- What are the differences between scripting languages available in CIO 5.0?

2. Scripting Languages

CI 5.0 uses java scripting API for executing the scripts, this API comes with sample scripting

language which is JavaScript. The scripting framework which executes the scripts can be

quite slow. Fortunately, most of the scripts in Cell Illustrator models are simple mathematical

expression, e.g. m1*m2, 0.1*m1. Thus, highly customized simplemath scripting language was

developed for this project and added to the scripting framework. Additionally two types of

scripting languages based on Java can be used: java and java-bulk. For those types the scripts

are written in Java, then compiled into java byte-code and executed within the scripting

framework as normal java method. For languages ported to the Java scripting framework

refer to https://scripting.dev.java.net/.

Note: Not all ported languages are optimized to be used in the scripting framework. CI 5.0

compiles and executes the scripts in the standard way as recommended officially announced

by Sun Inc.. Therefore script languages (e.g. Pnuts) that do not fully support the official rules

might cause problems, e.g. a scripts might require a predefined object for its execution.

https://scripting.dev.java.net/

Note: Very simple scripts (such as „1‟,‟true‟,‟2.434‟ or „m1‟), are not executed by evaluating

the script in the selected language, but they simply return the value as it is written. The

definition of simple scripts is summarized in Appendix A.

Language Properties

simplemath Default Scripting Language

Quite restrictive syntax

Allows writing mathematical expressions and some logical expressions

Provides many mathematical functions (basically it allows doing operations as

medium level calculators)

Very fast (basically one java function is invoked for each operation), quite

similar performance to java for not very complex scripts.

Most of the scripts can be used later in SECG

The syntax supported by simplemath script is summarized in Appendix B.

java Allows for writing scripts in normal java code. The code is placed inside a java

function from compilation and execution.

Fast. Very fast during execution. However slow at startup, since creation of the

simulation engine may take a lot of time - each of scripts is compiled separately.

Most of the scripts can be used later in SECG.

Requires JDK, JRE is not enough.

java-bulk Identical to java, but all scripts are compiled at once, so the generation of

engine is much faster than java.

However there is one drawback: If the script has errors, the error report can only

show the compile error but cannot point out the exact place where the error

script is written, i.e. kinetic script in process p1.

The recommended usage is to switch to java script to check the cause of error

and switch back to java-bulk after the model compiles successfully.

js Allows for writing scripts in js (javascript) language.

Not fast, not so fast as java at execution time.

More simple syntax than Java.

Not compatible with SECG. Scripts created in js might not run with SECG.

Not recommended for porting/conversion of CI 4.0 Pnuts scripts, complex

scripts might be very difficult/impossible to port.

Pnuts The Pnuts script is supported mainly for the backward compatibility to old Cell

Illustrator. In CI5.0 the running speed of Pnuts is very slow, since the

implementation of Pnuts is not customized to the java scripting framework.

When loading the model created in CI4.0 to CI5.0, it is recommended to switch

to other supported script language in CI5.0.

In most cases the scripts will work just after switching the script from Pnuts to

other language in the Simulation Setting dialog or Element Setting dialog.

If a model contains a few complicated scripts, one solution is to set Pnuts as

language for these complex scripts and set the default scripting language as

simplemath in simulation settings dialog. In such a case the slow Pnuts executor

will be used for the few complex scripts only, while rest of the scripts will be

executed by using the fast simplemath executor.

Note: When creating the script leave the language field empty and use the default language of

the model. The language should be set for very specific cases only, e.g. when you would like

to add some condition processing or use outside feature.

3. Porting Models created with CI 4.0

After loading models created with CI 4.0 into CI 5.0 workspace, it is recommended to run a

simulation to verify whether the simulation can be run with no script execution errors. If the

simulation run results in script execution errors, the user has to manually fix the problems

choosing one of the methods described below

a. Set Pnuts as Default Scripting Language for the Model

This is the simplest solution:

- Open the Simulation Settings Frame by clicking its icon on the right toolbar or by

choosing Window | Show Frame | Simulation Settings from the menu

- Set Pnuts in Default Scripting Language field by double clicking on the it and

choosing Pnuts in the list.

This solution is straight forward and recommended in most of the cases. However Pnuts

language is not recommended for simulation of large models since it is slower than the other

scripting languages Java, simplemath. Also models converted in that way cannot be simulated

with SECG (Simulation Engine Code Generator), since the code generated with this engine

must be compatible with Java.

b. Set Pnuts as Script Language for Selected Scripts

Execution of Pnuts scripts is much slower than of java or simplemath scripts. Therefore, if the

simulation speed matters, it recommended to minimize the number of Pnuts scripts. This can

be done in the following way:

- Open the CSML model created with CI 4.0 in CI 5.0

- Run the simulation.

- Find the scripts that cause execution errors using the Simulation Errors frame

- Change the Scripting Language of these scripts in Element Settings

Please note: For some script you will be not able to set a script language or the language

property will be common for many scripts (this is the case for kinetic parameters for process,

for example if process allows you specifying coefficient1 and coefficient2 than they will share

the language property). The default language for the whole model can be set in simulation

settings. This default language will be used whenever the script doesn‟t have the language set

or its language cannot be set.

c. Port Selected Scripts to Java

An alternative way to changing the Script Language to Pnuts, is to port the Pnuts script to the

recommended scripting language Java or simplemath. Using this approach the number of

Pnuts scripts can be minimized to 0, which should make the simulation much faster. To do

this:

- Open the CSML model created with CI 4.0 in CI 5.0

- Run the simulation.

- Find the scripts that cause execution errors using the Simulation Errors frame

- Open the problematic scripts in Script Editor and convert/port the script to Java

syntax.

The issue of Porting Scripts is described in the next chapter in detail.

4. Porting Scripts

The Pnuts in CI 4.0 isn‟t very restrictive to the form of the script (generally scripting

languages aren‟t), so it allowed omission of brackets, not using return statement or even not

returning a value. Generally the scripts can be divided into groups depending on their

complexity:

a. Math Scripts

Math Scripts are pure mathematical formulas (algebraic expressions) that are contained in one

statement.

Examples

M1*m2/4

sin(5)*cos((4+m1)/2)*(m1/(m1+m2))

return m1;

Math scripts are simple, one line scripts. They can be written in two ways:

- Simplemath style – pure algebraic expression

- Java style – mathematical formula surrounded with „return‟ and „;‟

In general both styles are supported; CI 5.0 automatically converts between simplemath and

Java style by adding or removing the surrounding „return‟ and „;‟, if necessary.

It is recommended to use simplemath style when writing the scripts. Such scripts should

neither include „return‟ nor semicolon „;‟,

In CI 4.0 the scripts were written in Puts language. The porting of math scripts from CI 4.0 to

CI 5.0 is summarized in the table below.

CI 4.0 Expression

Pnuts style

Conversion from

CI 4.0 to CI 5.0

CI 5.0 Expression

simplemath Style

CI 5.0 Expression

Java Style

m1

return m1

return m1;

Automatic m1 return m1;

m2+m3

return m2+m3;

Automatic m2+m3 return m2+m3;

m1=m2+m3;

m1=m2+m3

User check/fix

required.

m2+m3 return m2+m3

m1=m2+m3;return

m3;

User check/fix

required.

m2+m3 return m2+m3

b. Mathematical Functions

As for the math functions there are two cases:

- Standard functions which include common math functions (sin, pow, exp) defined in

the scripting languages.

- CI-Specific math functions written in Pnuts specially for CI 4.0 (like LSMass, median,

beta)

Java, simplemath and js scripts may use all the functions and constants defined in Math class

- http://java.sun.com/javase/6/docs/api/java/lang/Math.html. Pnuts has a very similar set of

functions.

CI-Specific functions were ported to simplemath and java – through static import of

simulation functions.

CI 4.0 Expression

Pnuts style

CI 5.0 Expression

Java

Simplemath

Pnuts

CI 5.0 Expression

Js

Standard Math Functions

sin(x)

cos(x)

max(x,y)

etc.

Identical to CI 4.0

Pnuts style

Math.sin(x)

Math.cos(x)

Math.max(x,y)

etc.

Standard Math Constants

PI()

E()

Identical to CI 4.0

Pnuts style

Math.PI

Math.E

CI-Specific Math Functions

median(x,y,z)

beta(x,y)

gamma(x)

rand()

SMass(x,y)

LSMass(x,y)

LSMass2(x,y)

pow(x,y)

Identical to CI 4.0

Pnuts style

Not available

Moreover simplemath operates on list of doubles, so it is acceptable to write

„exp(m1,m2,m3,…)‟ or „min(m1,m2,m3,…)‟, simply the additional arguments will be omitted

(please note that it may happen in the future that for functions such as min or median will

operate on all provided arguments (also there is a simple way of adding additional math

function to simplemath).

http://java.sun.com/javase/6/docs/api/java/lang/Math.html

c. Condition Statements

Examples

m1>3?34:m1*0.1

if(m1>3) 34; else m1*0.1

if(m1>3)

{

 return 34;

}

else

{

return m1*0.1;

}

Above scripts generally check some condition and return a result depending on the outcome.

Basically there are two ways of defining conditions:

- by „?:‟ operator - available in all languages, and

- by „if/else‟ operator (java, Pnuts, js)

Both ways are supported in SECG. The „?:‟ is better in the sense that the script can be written

in one statement and is similar to math script case described before. The if/else statement

generates more problems with the usage of „return‟, ‟;‟ and „{..}‟. For instance Pnuts has

some problems with return statement at runtime. Also please note that if the script is complex

(if/else) you must use return statement in Java. And please also take care that all paths return a

value (this may otherwise generate null pointer exceptions at runtime.

CI 4.0 Expression

Pnuts style

CI 5.0 Expression

Java

CI 5.0 Expression

Simplemath

CI 5.0 Expression Js

?: condition operator

m2 > 0.5 ? 1 : 0; Identical to CI 4.0

Pnuts style

Identical to CI 4.0

Pnuts style

Identical to CI 4.0

Pnuts style

If/else condition operator

if (m2 > 0.5)

{

 return 1;

}

else

{

 return 0;

}

Identical to CI 4.0

Pnuts style

NOT SUPPORTED

if (m2 > 0.5)

{

 result = 1;

}

else

{

 result = 0;

}

All languages provide support for conditional operators „>‟,‟<‟,‟==‟,‟!=‟ and for logical

operators „||‟, „&&‟. Thus, you can generally write conditions such as „((m1>3||m4+3<m1)

&& m2!=m1)‟.

Note: „!‟ operator is not supported in simplemath. To use that, need to use other scripting

language.

d. Special predefined functions

In CI 4.0 user could use predefined functions:

getElapsedTime(simulator),

getSamplingInterval(simulator) and

IfTime(simulator,time).

In CI 5.0 there are corresponding variables time, samplingInterval and simulationTime. The

predefined functions are replaced by the corresponding variables or constructs before

compilation of all scripting languages. Thanks to that the CI4.0 model with those functions

will run without problem.

The four functions should be treated as deprecated.

Conversion rules of CI4.0 predefined time functions to CI5.0 constants is show in the table

below:

CI 4.0 Expression

Pnuts style

Converted CI 5.0 Expression

Java

Simplemath

Pnuts

Js

getElapsedTime(simulator) time

getSamplingInterval(simulator) samplingIntreval

IfTime(simulator,timePoint). IfTime(simulator,time) is equivalent to:

samplingInterval/2>abs(timePoint-time)

Also additional sequence manipulation functions exist in CI 4.0, like transition, transcription,

and are defined in gon.jar. All these functions from gon.jar are also available in CI 5.0 in both

simulation engines: standard and SECG.

CI 4.0 Function

Pnuts style

CI 5.0 Function Java CI 5.0 Function Js

transcription

or

Transcription::Trans

gon.Transcription.Trans

Packages.gon.Transcription.Trans

translation

or

Translation::Trans

gon.Translation.Trans

Packages.gon.Translation.Trans

Note: The proper function call has to be used for each language – it means the script code has

to be updated after changing the script language.

e. Complex/Generic Scripts

Despite similarity between different languages, complex scripts are very dependent on the

language used. These differences may lead to compilation or execution problems when

changing from one scripting language to another. Many of complex Pnuts scripts will fail to

compile in Java. The table below summarizes the differences between the script languages.

 CI 4.0 Expression

Pnuts style

CI 5.0 Expression

Java Style

CI 5.0 Expression

js Style

Return Value Optional Required Required

„return‟ statement Optional Required Not allowed

Type Declaration Optional Required Optional

Imports Supported Not Allowed Supported

Language Specific

Operators or

Functions

operator „::‟ operator „.‟ operator „.‟

Note: Simplemath is not intended for handling complex scripts.

Here are general guidelines for writing/porting complex scripts:

1. Return Value.

In CI 4.0, in some cases, Pnuts scripts did not return any value; their execution did not

make any change. Such scripts will cause compilation problems in CI 5.0 and have to be

fixed by the user.

In CI 5.0, scripts must return a value, because the general execution rule is

newValue=script(values).

CI 4.0 Expression

Pnuts style

CI 5.0 Expression

Java Style

if (rand() > 0.5)

{

return 1;

}

if (rand() > 0.5)

{

return 1;

}

return m1; // return value required!!

2. „return‟ statement.

In Pnuts scripts return statements are often omitted, e.g. if (m2>m3) {m1=1} else {m1=2};

Such scripts will cause compilation problems in Java. To fix them please use the „return‟

statement to point the return value explicitly, e.g. e.g. if (m2>m3) {return 1} else {return

2};

CI 4.0 Expression

Pnuts style

CI 5.0 Expression

Java Style

sin(m2);

// return statement required!!

return sin(m2);

3. Type Declaration

In Pnuts and js, the variable type is not declared in most cases. In java you must use full

type name (with packages). Therefore, you will always have to define the type for each

variable used in the script, when porting the script code from Pnuts to Java. Alternatively,

an entity could be added with the same variable name as the local variable, e.g. ,

CI 4.0 Expression

Pnuts style

CI 5.0 Expression

Java Style

code = “A”;

return code.length();
// type decelaration required

String code = “A”;

return code.length;

4. Imports

Imports cannot be used in Java code. If imports were used in Pnuts, they must be removed

and the absolute package name has to be used in the code, e.g.:

CI 4.0 Expression

Pnuts style

CI 5.0 Expression

Java Style

import("gon.Transcription");

Transcription::Trans(“A”);

// import forbidden

return gon.Transcription.Trans(code);.

5. Operators, e.g. Static functions

Some advanced operators might be different in each scripting language. In Pnuts static

functions are accessed by „::‟ operator, e.g. Transcription::Trans(code). In Java these

functions are accessed by „.‟ Operator, e.g. gon.Transcription.Trans(code);. Therefore, the

operators have to be replaced when changing the scripting language.

CI 4.0 Expression

Pnuts style

CI 5.0 Expression

Java Style

import("gon.Transcription");

Transcription::Trans(“A”);

// different static function operator

return gon.Transcription.Trans(code);

5. Appendix A. Definition of Simple Scripts

Simple scripts are scripts that are treated as plain text by the simulation engine. Such scripts

are neither compiled nor executed, but the simulation engine replaces the script by a value.

Thank to that simple scripts are independent from scripting language selection, they will

always return the same value regardless of the selected language. The simple scripts can be

divided into several types, which are defined by regular expressions:

Type Regular Expression Example

Number "[+-]?([0-9]*\\.?[0-9]+|[0-9]+\\.?[0-9]*)([eE][+-

]?[0-9]+)?"
-98.76

1.234E-56

Boolean “true”

“false”

true

false

String "\"[^\"]*\"" “abc”

Variable "[_a-zA-Z][_a-zA-Z0-9]*" m22

The simple scripts might be surrounded by “return” and “;”. In such a case the program will

detect this and neither compile nor execute the script, but replace it with the proper value

Examples of simple scripts surrounded with “return” and “;”.

return 1.23;

return 4.56e-789

true;

return false;

return “abc”

m22;

6. Appendix B. Definition of Simplemath Scripts

The simplemath language is dedicated for writing math scripts, which will be executed very

fast by the simulation engine. A simplemath script consist of exactly one expression that may

include tokens listed in the table below:

Simplemath tokens
TOKEN Description Definition Example
VARIABLE Variable Label

identifying an

entity value

('a'..'z'|'A'..'Z'|'_')(
'a'..'z'|'A'..'Z'|'_'|'0'..'9')*

m1, m2, m3, etc

VALUE Number ('0'..'9')+('.'('0'..'9')*)?| '.'('0'..'9')+ 123.456
OPERATOR Algebraic

operator:

ADDITIVEOP
 : '+'
 | '-'
MULTIPLICATIVEOP
 : '*'
 | '/'
 | '%'

m1+2

m2*m3

m2/m3

m1%m2

UNARY Unary sign

operator:

ADDITIVEOP
 : '+'
 | '-'

-m1

-6.5

COMPARATOR Comparator

operators: equal,

not equal, less

than, greater than

EQUALOP
 : '=='
 | '!='
NOTEQUALOP
 : '<'
 | '>'
 | '<='
 | '>='

m1 == m2

m1 >= 2

LOGICAL Logical operators OROP
 : '||'
ANDOP
 : '&&'

m1 > 1 || m2 > 1

m1 > 1 && m2 > 1

FUNC Functions and

Constants, which

are defined in

enum EFunction
in class
FuncMathScript

rand

random

gauss

gaussian

PI

E

sin

cos

tan

asin

acos

atan

ceil

floor

round

exp

log

abs

sgn

signum

min

max

rand()

sin(m1)

PI

E

pow(m1,2)

hill(1,2,3,4)

pow

atan2

beta

gamma

median

SMass

LSMass

LSMass2

hill

err

IF Question mark

operator

QMARK
 : '?'
ELSE
 : ':'

m1 > 0.5 ? 0 : 1

Parentheses Brackets)

LPAREN
 : '('
 ;
RPAREN
 : ')'
 ;

(1+m2)/2

WHITESPACE

Spaces WHITESPACE
 : ('\t' | ' ' | '\r' | '\n'| '\u000C')+
 { $channel = 99; }
 ;

The precise simplemath grammar is shown below. It can be also found in the ifElse.g file in

SVN (NCI\trunk\Simulation\src\org\csml\nci\simulation\script\simplemath\gramma).

Simplemath Grammar

grammar IfElse;

/*
 * use antlr 3 to generate the parser and grama files
 * from this file, it should generate IfElse.java and IfElseLexer.java
 *
 * With regard to the generated output tree there are two issues:
 * - it generates nodes which are solely used for presedence i.e.:
 * AddExpresion
 * |-MultiplyExpresion
 * |-*
 * |-SomeExprForParam1
 * |-SomeExprForParam2
 * Here the AddExpr is empty and only references proper subexpresion
 * - it generates empty 'if' nodes, which don't hold if statements
 * but similarly to the previous issue reference some other nodes
 * The solution is to simply ignore this two cases:
 * if (node.childCount==1) return parse(node.child(0));
 *
 */

options
{
 output = AST;
}

tokens {

 VARIABLE;
 VALUE;
 OPERATOR;
 UNARY;
 COMPARATOR;
 LOGICAL;
 FUNC;
 IF;
}

series
 : expr
 ;

expr
 : or_conditional_expr (QMARK expr ELSE expr)? -> ^(IF or_conditional_expr expr*)
 ;

or_conditional_expr
 : and_conditional_expr (OROP and_conditional_expr)* -> ^(LOGICAL and_conditional_expr (OROP
and_conditional_expr)*)
 ;
and_conditional_expr
 : notequal_conditional_expr (ANDOP notequal_conditional_expr)* -> ^(LOGICAL notequal_conditional_expr
(ANDOP notequal_conditional_expr)*)
 ;

notequal_conditional_expr
 : equal_conditional_expr (NOTEQUALOP equal_conditional_expr)* -> ^(COMPARATOR
equal_conditional_expr (NOTEQUALOP equal_conditional_expr)*)
 ;
equal_conditional_expr
 : additive_expr (EQUALOP additive_expr)* -> ^(COMPARATOR additive_expr (EQUALOP additive_expr)*)
 ;

additive_expr
 : multiplicative_expr (ADDITIVEOP multiplicative_expr)* -> ^(OPERATOR multiplicative_expr (ADDITIVEOP
multiplicative_expr)*)
 ;
multiplicative_expr
 : item (MULTIPLICATIVEOP item)* -> ^(OPERATOR item (MULTIPLICATIVEOP item)*)
 ;

item
 : LPAREN expr RPAREN -> ^(expr)
 | LABEL -> ^(VARIABLE LABEL)
 | LABEL LPAREN (expr (',' expr)*)? RPAREN -> ^(FUNC LABEL expr*)
 | NUMBER -> ^(VALUE NUMBER)
 | ADDITIVEOP item -> ^(UNARY ADDITIVEOP item)
 ;

COMMA
 : ','
 ;
LABEL
 : ('a'..'z'|'A'..'Z'|'_')('a'..'z'|'A'..'Z'|'_'|'0'..'9')*
 ;
NUMBER
 : ('0'..'9')+('.'('0'..'9')*)?
 | '.'('0'..'9')+
 ;
NEWLINE
 : '\r' '\n' // DOS
 | '\n' // UNIX
 ;
ADDITIVEOP

 : '+'
 | '-'
 ;
MULTIPLICATIVEOP
 : '*'
 | '/'
 | '%'
 ;
NOTEQUALOP
 : '<'
 | '>'
 | '<='
 | '>='
 ;
OROP
 : '||'
 ;
ANDOP
 : '&&'
 ;
EQUALOP
 : '=='
 | '!='
 ;
NOTOP
 : '!'
 ;
LPAREN
 : '('
 ;
RPAREN
 : ')'
 ;
QMARK
 : '?'
 ;
ELSE
 : ':'
 ;
WHITESPACE
 : ('\t' | ' ' | '\r' | '\n'| '\u000C')+ { $channel = 99; }
 ;

	Introduction
	Scripting Languages
	Porting Models created with CI 4.0
	Set Pnuts as Default Scripting Language for the Model
	Set Pnuts as Script Language for Selected Scripts
	Port Selected Scripts to Java

	Porting Scripts
	Math Scripts
	Mathematical Functions
	Condition Statements
	Special predefined functions
	Complex/Generic Scripts

	Appendix A. Definition of Simple Scripts
	Appendix B. Definition of Simplemath Scripts

